
 1

ACCESS15-0017

Oceanographic In-situ Interoperability Project

Deliverable # D5/ OIIP-74

IMPLEMENTATION OF TAGBASE IN POSTGRESQL

Version: # 2

Aug 25, 2018

Revision: # 2

JPL URS CL#:

Acknowledgement: The research was carried out at the Jet Propulsion Laboratory, California Institute of

Technology, University Cooperation for Atmospheric Research, and University of Massachusetts-Boston

under a contract with the National Aeronautics and Space Administration.

 © 2018 California Institute of Technology. Government sponsorship acknowledged.

 2

Document Change Record

Author Update Description
Pages/paragraphs

changed
Date of revision

Chi Hin Lam 1. Original v1.0 Draft All May 31, 2018

Chi Hin Lam 2. Updated data model All Jun 19, 2018

Vardis Tsontos 3. Review, minor edits and addition of

Deployment section and Appendix C
ALL Aug 25, 2018

 3

Table of Contents

List of Figures .. 3

List of Tables ... 3

1. Overview .. 4

2. Review of Tagbase relational data model .. 4

3. Electronic Tag Universal File Format (eTUFF) ... 5

4. Tagbase PostgreSQL relational data model.. 10

5. Tagbase Package Installation .. 13

Tagbase Deployment via Docker .. 13

Manual Tagbase Deployment [Advanced Users] ... 15

6. Generating Tagbase Materialized Views .. 18

Appendix A – Example of an eTUFF file for time series data recorded by a sailfish 19

Appendix B – Table structures of Tagbase in PostgreSQL .. 20

Appendix C – SQL Script for Running Materialized Views .. 22

References .. 26

List of Figures
Figure 1 Overall architecture of Tagbase. Lam CH, Tsontos VM (2011) . PLoS ONE 6(7): e21810.

doi:10.1371/journal.pone.0021810 ... 4
Figure 2 Tagbase PostgreSQL schema. ... 10

List of Tables
Table 1 Example of eTUFF supported observations from sensor measurements in electronic tags. 8

 4

1. Overview
Tagbase is a relational database application for the management of biologging data from electronic tags

deployed on various marine animals. Tagbase implements a comprehensive relational model handling

archival, pop-up archival satellite and telemetry tag files from all major instrument manufacturers. To

maximum its value for the community, Tagbase is ported from Microsoft Access into PostgreSQL, a

popular open source database management system, as part of the OIIP project. The resulting schema is

hosted as open-source code back in Tagbase’s Github (https://github.com/tagbase/tagbase). This

document describes the design and implementation aspects of Tagbase in PostgreSQL.

Figure 1 Overall architecture of Tagbase. Lam CH, Tsontos VM (2011) . PLoS ONE 6(7): e21810.
doi:10.1371/journal.pone.0021810

2. Review of Tagbase relational data model

Existing relational data model in Tagbase is customized to accommodate various output formats from

different manufacturers. While this design is more readily recognized by end users, table structures are

hard to evolve through time along with changes made by manufacturers. As manufacturers add new

sensors to their product line-ups, a normalized relational model must be developed to achieve (1)

flexibility to add new measurement types and values, and (2) consistent table structures that allow

access of data by queries, materialized views, and other programs. To meet both requirements, we

streamlined Tagbase’s existing data model, and implemented a normalized template to house all

possible measurements from manufacturers’ output files. The results of such are described in the

following sections.

https://github.com/tagbase/tagbase

 5

3. Electronic Tag Universal File Format (eTUFF)

A key impedance to efficiently handle or import data outputs from different instrument manufacturers

is the variety of file structures used. While most output files are formatted as simple text/ ASCII files,

they do not share a common file header, which is further complicated by non-standard naming of

attributes or header fields. A considerably amount of variability exists even within a single

manufacturer’s output files, likely because new sensors or firmware are introduced or updated over

time. We therefore specify a common file format, termed as electronic tag universal file format (eTUFF),

to house data in a normalized fashion that can accommodate data from all possible manufacturer

outputs. Ideally, an eTUFF shall be generated at “source”, i.e., during parsing of sensor data into output

files via manufacturer decoding software, in addition to the output files the software currently

generates for end users.

Essentially, eTUFF is a self-described comma-separated text file container for sensor data, consisting of a

metadata section and a data section. Comment character in eTUFF is denoted by double forward

slashes, //. Requirements and recommendations for the metadata are covered in JPL URS CL#: 17-

43941. The full listing of metadata is available at

https://raw.githubusercontent.com/tagbase/tagbase/master/eTagMetadataInventory.csv. While the

relevant attributes and level of detail may vary, the goal of the metadata section is to provide enough

information (e.g., species, life stage, length or weight measurements) such that a single eTUFF is self-

described and fully contained. Refer to Appendix A for an example of the metadata section.

After the metadata section, the data section allows all types of sensor data to be stored under the

following header line:

// data:

// DateTime,VariableID,VariableValue,VariableName,VariableUnits

Each attribute is described as follows:

 DateTime – formatted as yyyy-mm-dd hh:mm:ss according to ISO 8601. By default, this date-

time is in Greenwich Mean Time (GMT), per most manufacturer’s default time zone setting for

the on-board clock. This field can be left empty, as denoted by open and close quotes “”, for

timeless elements such as a depth histogram lower bin value.

 VariableID, VariableName, VariableUnits – identifier, name and unit for a

measurement, e.g., depth or internal temperature. The full listing of currently identifiable

observation types is found https://raw.githubusercontent.com/tagbase/tagbase/master/eTUFF-

ObservationTypes.xlsx, and partially illustrated in

An eTUFF file can be parsed by the Rosetta tool (http://rosetta.unidata.ucar.edu) to generate a self-

described CF/ACDD compliant netCDF file, following OIIP project enhancements. Both files (eTUFF or

Rosetta-processed netCDF) can be ingested into Tagbase PostegreSQL.

Table 1 Example of eTUFF supported observations from sensor measurements in electronic tags.

https://oiip.jpl.nasa.gov/doc/OIIP_Deliverable1.2_TagMetadata_20170227.pdf
https://oiip.jpl.nasa.gov/doc/OIIP_Deliverable1.2_TagMetadata_20170227.pdf
https://raw.githubusercontent.com/tagbase/tagbase/master/eTagMetadataInventory.csv
https://raw.githubusercontent.com/tagbase/tagbase/master/eTUFF-ObservationTypes.xlsx
https://raw.githubusercontent.com/tagbase/tagbase/master/eTUFF-ObservationTypes.xlsx

 6

Here are examples how eTUFF can accommodate some of the common data outputs, using the

information presented in Table 1.

a) Time series measurements – e.g., depth only

b) Histogram summaries – e.g., time spent at depth

Histogram usually allows a number of user-specified, pre-programmed bins in which
data are summarized into. In the following case, depth bin #8 is between 150 and 200
meters, which are specified by the first two entries. Notice the null values in the
datetime column since the bin information does not contain any such information.

 7

c) Profile measurements – e.g., minimum and maximum temperature at depth
measurement #4 (depth measurements are usually picked dynamically by on-board
algorithm).

 8

 . This listing is expected to be updated when manufacturers continue to provide new sensor

measurements. Ideally, this list will be vetted by the rest of the tagging community to

standardize the vocabulary to describe manufacturer-specific measurements in an easily

understandable manner.

 VariableValue – the measurement value for a particular sensor, or pre-programmed

setting. This value should be numeric, as “double” precision value.

An eTUFF file can be parsed by the Rosetta tool (http://rosetta.unidata.ucar.edu) to generate a self-

described CF/ACDD compliant netCDF file, following OIIP project enhancements. Both files (eTUFF or

Rosetta-processed netCDF) can be ingested into Tagbase PostegreSQL.

Table 1 Example of eTUFF supported observations from sensor measurements in electronic tags.

Here are examples how eTUFF can accommodate some of the common data outputs, using the

information presented in Table 1.

d) Time series measurements – e.g., depth only

e) Histogram summaries – e.g., time spent at depth

Histogram usually allows a number of user-specified, pre-programmed bins in which
data are summarized into. In the following case, depth bin #8 is between 150 and 200
meters, which are specified by the first two entries. Notice the null values in the
datetime column since the bin information does not contain any such information.

http://rosetta.unidata.ucar.edu/

 9

f) Profile measurements – e.g., minimum and maximum temperature at depth

measurement #4 (depth measurements are usually picked dynamically by on-board
algorithm).

 10

4. Tagbase PostgreSQL relational data model

Assuming eTUFF as the input source (described in previous section), a data model is designed for

Tagbase in PostgreSQL (Figure 2; Appendix B). The schema can be accessed via this script at

https://raw.githubusercontent.com/tagbase/tagbase/master/Tagbase_schema.sql. With this script one

should be able to execute the script and generate a virgin database from scratch with all the necessary

code table information included as necessary for the eTUFF data ingest scripts to function. The primary

keys, relationships, and data types are explicitly described within the script, and therefore, will not be

covered here.

Date time information is represented as yyyy-mm-dd hh:mm:ss following ISO 8601. Time zone can be

specified in the imported data. Refer to https://www.postgresql.org/docs/8.2/static/datatype-

datetime.html for details.

Figure 2 Tagbase PostgreSQL schema.

Architecture and data flow

Tagbase contains 1 housekeeping table, 1 metadata table, 3 lookup tables, and 5 observational data

tables. When a dataset in the eTUFF format is being imported, or reimported (for example, in the case of

an updated dataset), this event is treated as a new submission, triggering the generation of a unique

submission_id in the table, submission. If the dataset is returned by a tag deployment that does

not currently exist in the database, a new tag_id is also generated in the table, submission. To

determine whether a dataset is being reimported i.e., looking up a previously generated tag_id, we

check for the required metadata attribute, instrument_name, in the eTUFF metadata section, which is

an identifier that is unique within the data provider/ research’s own organization.

The submission_id and tag_id provide the linkage among various tables, except in the lookup

tables. Lookup tables (metadata_types, observation_types, histogram_bin_info) share

common information that is independent of a specific tag or submission. For example, the same depth

https://raw.githubusercontent.com/tagbase/tagbase/master/Tagbase_schema.sql
https://www.postgresql.org/docs/8.2/static/datatype-datetime.html
https://www.postgresql.org/docs/8.2/static/datatype-datetime.html

 11

histogram bins can be used by multiple tags deployed across the years for ease of analysis and

consistent experimental design.

With the generated submission_id and (generated/ looked up) tag_id , metadata section of the

imported eTUFF file is parsed into the table metadata, and data section into the table

proc_observations. Relevant lookup and updates are then performed to obtain the values contained

within metadata_types and observation_types tables.

Data sitting in the table proc_observations can be diverse, some of which are specific to particular

tag models or manufacturers depending on the data products they provide. The full listing of currently

identifiable observation types is found

https://raw.githubusercontent.com/tagbase/tagbase/master/eTUFF-ObservationTypes.xlsx. The same

listing is housed in the table observation_types.

Four common data representations are shared among outputs from different manufacturers, in which

the following tables are designed around, with underlying philosophy that each of these tables contains

some unique dimensions (identified below in parentheses) for the data:

1. data_time_series: (time); time here is usually at a high frequency, it can be in intervals of

seconds or less

2. data_position: (time, longitude, latitude)

3. data_profile: (time, depth) where depth represents a standard depth in meters

4. data_histogram_bin_data: (time, x, y) where dimension x comes from

histogram_bin_info (i.e., how the histogram should be set up), and y comes from a group-

by method on a measurement, e.g., count of occurrence or average of temperature. Naturally,

the measurement specified by x and y should be meaningful, as there is no point to summarized

maximum depth within the depth bin of 0-100 m.

Data sitting in the table proc_observations that conform to one of the above data representations

are then relocated (via a set of queries) to the respective data_ tables. The rationale to relocate is to

make the data access quicker and more human-readable. Data that do not conform to such

representations remain in proc_observations table. This is the last step in the data import process.

A quick breakdown of what each table does follows:

Housekeeping table

 submission – documents the import of a new dataset, including date-time, filename and

version of the import. dmas_granule_id is used internally by the OIIP project.

Metadata tables

 metadata, metadata_types – contain metadata variables and values listed in

https://raw.githubusercontent.com/tagbase/tagbase/master/eTagMetadataInventory.csv

Tables to support observational data

 observation_types – a lookup table that describes the types of measurements/
observations (name, units etc.) The full listing of currently identifiable observation types is
found https://raw.githubusercontent.com/tagbase/tagbase/master/eTUFF-
ObservationTypes.xlsx.

 proc_observations – contains decoded measurements by sensors on an instrument. This
table is the destination in which data are first imported and stored.

https://raw.githubusercontent.com/tagbase/tagbase/master/eTUFF-ObservationTypes.xlsx
https://raw.githubusercontent.com/tagbase/tagbase/master/eTagMetadataInventory.csv
https://raw.githubusercontent.com/tagbase/tagbase/master/eTUFF-ObservationTypes.xlsx
https://raw.githubusercontent.com/tagbase/tagbase/master/eTUFF-ObservationTypes.xlsx

 12

Specialized tables for representing observational data: These tables contain data that are relocated from

proc_observations after being first imported into the database. They hold data that have a

distinctive geometry, time series or summarized format.

 data_position – contains positional data (lat, lon), and their associated errors (lat_err,

lon_error) in decimal degree
 data_timeseries – contains time series (date_time) observational data (variable_id,

variable_value). variable_id links back to the lookup table observation_types.

 data_profile – contains profile-like observational data (variable_id, variable_value)
at particular depths (depth). variable_id links back to the lookup table
observation_types. An example is the mean temperature (defined in
observation_types) recorded at depths of 0,100, 200, 400 and 800 meters.

 data_histogram_bin_info – a lookup table contains metadata on how bins are set up for
histograms or summarizing data within an interval of values (e.g., 0-100 meters). bin_id
specifies a particular binning scheme. bin_class specifies a particular bin (out of a total
number of bins) in which the range of values (min_value, max_value) is set for a type of
observation (variable_id that links back to the lookup table observation_types).

 data_histogram_bin_data – contains histogram-like data (variable_id,
variable_value). Works in combination with data_histogram_bin_info that describes
how binning was set up.

The use of tables, data_histogram_bin_info and data_histogram_bin_data, can be illustrated
with the following pseudo-code:

data_histogram_bin_info

bin_id = 1; 0-100, 100-200, 200-300 meters depth binning

observation_types

variable_id = 1001; variable_name = frequency for occurrence expressed as a
fraction (0-1), which is the equivalent of time-spent-at-depth or temperature over a temporal
period (e.g., a 8-hour summarizing interval. Note this summarizing period should be specified in
the metadata, or calculated post hoc by taking the difference between two date-time stamps).
variable_id = 1017; variable_name = tempMean for mean temperature in Celsius

data_histogram_bin_data
variable_id = 1001; variable_value = 0.6, 0.3, 0.1

variable_id = 1017; variable_value = 30, 20, 15

 13

5. Tagbase Package Installation
The Tagbase distribution delivered by the OIIP project is comprised of several elements conveniently

packaged for effortless deployment in a Docker image but also available as individual components for

custom/manual installations:

 PostgreSQL implementation of the revised Tagbase relational database schema providing also

eTUFF support

 Series of SQL scripts and Python 3 routines facilitating ingestion of electronic tagging data into

the Tagbase Postgresql and used also used to automate the creation of standardized outputs in

the form of materialized views.

 Tagbase-server: a Rest-API and browser-based form interface allowing for either

automated/script based ingestion of tag data files or interactive imports

 PostgreSQL 10 with the PgAdmin 4 tool and all necessary Python 3 libraries

 Docker image packing installation of all of the above components in the correct sequence to

initiate a fully-working instance of Tagbase and its server ready for usage.

Tagbase Deployment via Docker
Note that this by far the simplest method for deploying and getting up and running with Tagbase. It is

strongly recommended for most users. A video tutorial on the Docker Tagbase deployment is available

at https://www.youtube.com/channel/UC8gdz1fOVGndTJkz88Fi7mg

Overview
Tagbase is a Flask application which provides HTTP endpoints for ingestion of
various files into the Tagbase SQL database.

Running with Docker:

 Introduction
Docker enables rapid simplified deployment of Tagbase by removing
all services setup and configuration e.g. PostgreSQL, tagbase-server, etc.
This is achieved via [Docker Compose]](https://docs.docker.com/compose/overview/); a tool for
defining and
running multi-container Docker applications.
See below for prerequisite installation requirements.

 Prerequisites

 Git
 Docker

Either download tabase-server OR clone the source code with Git

$ git clone https://${urs_username}@git.earthdata.nasa.gov/scm/oiip/tagbase-server.git

N.B. you should replace ${urs_username} with your URS username.

Either way, once you've acquired the tagbase-server source code on your workstation, you need to
navigate to the source root directory e.g.

$ cd tagbase-server

https://www.youtube.com/channel/UC8gdz1fOVGndTJkz88Fi7mg
http://flask.pocoo.org/
https://www.docker.com/why-docker
https://docs.docker.com/compose/overview/
https://git-scm.com/downloads
https://www.docker.com/products/docker-desktop
https://git.earthdata.nasa.gov/rest/api/latest/projects/OIIP/repos/tagbase-server/archive?format=zip

 14

 Deployment

N.B. Due to the size of the input datasets we ingest into tagbase-server, it is essential that the container
running the service has sufficient available memory (4GB should do the trick).

See this for Mac:
https://docs.docker.com/docker-for-mac/#memory
MEMORY By default, Docker for Mac is set to use 2 GB runtime memory, allocated from the total
available memory on your Mac. You can increase the RAM on the app to get faster performance by
setting this number higher (for example to 3) or lower (to 1) if you want Docker for Mac to use less
memory.

For Windows:
https://docs.docker.com/docker-for-windows/#advanced
Memory - Change the amount of memory the Docker for Windows Linux VM uses

Once sufficient memory is available, to orchestrate and deploy the Tagbase services execute the
following from this root directory:

$ docker-compose build
$ docker-compose up

After a short while, you will now have a completely Dockerized deployment of Tagbase (master),
PosgreSQL 10.X and pgAdmin.

See below for accessing the Web Applications.

To stop the docker-compose deployment, simply open a new terminal, navigate to the tagbase-server
root directory and execute

$ docker-compose stop

You will see the services graciously shutdown.

 Tagbase Server

N.B. The URI's below may alternate between localhost and 0.0.0.0 depending on whether your
workstation is Windows (localhost) or Linux/Mac (0.0.0.0)

Navigate to http://localhost:5433/v1/tagbase/ui/
to see the tagbase-server UI running.

It will really help for you to read the API documentation provided in the Web Application.

Using the eTUFF API, you can execute the following commands to initiate a primitive test
ingestion of some sample eTUFF-sailfish-117259.txt data present on the server.

Using curl...
curl -X GET --header 'Accept: application/json'
'http://0.0.0.0:5433/v1/tagbase/ingest/etuff?granule_id=1234&file=file%3A%2F%2F%2Fusr%2Fsrc%2Fa
pp%2Fdata%2FeTUFF-sailfish-117259.txt'

https://docs.docker.com/docker-for-mac/#memory
https://docs.docker.com/docker-for-windows/#advanced
https://www.postgresql.org/
https://www.pgadmin.org/
http://0.0.0.0:5433/v1/tagbase/ui/
http://0.0.0.0:5433/v1/tagbase/ui/#%21/Products/ingest_etuff_get

 15

...or using a Request URL
http://0.0.0.0:5433/v1/tagbase/ingest/etuff?granule_id=1234&file=file%3A%2F%2F%2Fusr%2Fsrc%2Fa
pp%2Fdata%2FeTUFF-sailfish-117259.txt

N.B. The REST server is capable of ingesting data from many sources e.g. file, ftp, http and https.

 pgAdmin

Navigate to http://0.0.0.0:5434/browser/ or on Windows machines http://localhost:5434/browser/ and
enter ..

username tagbase
password tagbase

NB. As PostgreSQL administrator you will be able to change the tagbase user account login account as
necessary

You can now:

 Add New Server
 General Tab --> name: tagbase
 Connection Tab --> Host name/address: postgres
 Connection Tab --> Port: 5432
 Connection Tab --> Maintenance database: postgres
 Connection Tab --> Username: tagbase

On the left hand side navigation panel, you will now see the persistent connection to the tagbase
database.

Manual Tagbase Deployment [Advanced Users]
Manual installation of Tagbase is described here, however, we recommend this only for system
administrators or other more advanced users.

 Introduction
 Requirements
 Installation and Usage

o Tagbase Server
o PostgreSQL

 Data Migration and Materialized Views
o Materialized Views

 Issues and Feedback

 Introduction

The primary deployment strategy for tagbase-server is via Docker. This is explained in the previous
section.

For developers who wish to prototype tagbase-server for local deployment, this document provides a
HOW_TO.

http://0.0.0.0:5433/v1/tagbase/ingest/etuff?granule_id=1234&file=file%3A%2F%2F%2Fusr%2Fsrc%2Fapp%2Fdata%2FeTUFF-sailfish-117259.txt
http://0.0.0.0:5433/v1/tagbase/ingest/etuff?granule_id=1234&file=file%3A%2F%2F%2Fusr%2Fsrc%2Fapp%2Fdata%2FeTUFF-sailfish-117259.txt
http://0.0.0.0:5434/browser/
http://localhost:5434/browser/
https://wiki.earthdata.nasa.gov/display/OIIP/Manual+Installation+of+tagbase-server#ManualInstallationoftagbase-server-Introduction
https://wiki.earthdata.nasa.gov/display/OIIP/Manual+Installation+of+tagbase-server#ManualInstallationoftagbase-server-Requirements
https://wiki.earthdata.nasa.gov/display/OIIP/Manual+Installation+of+tagbase-server#ManualInstallationoftagbase-server-InstallationandUsage
https://wiki.earthdata.nasa.gov/display/OIIP/Manual+Installation+of+tagbase-server#ManualInstallationoftagbase-server-TagbaseServer
https://wiki.earthdata.nasa.gov/display/OIIP/Manual+Installation+of+tagbase-server#ManualInstallationoftagbase-server-PostgreSQL
https://wiki.earthdata.nasa.gov/display/OIIP/Manual+Installation+of+tagbase-server#ManualInstallationoftagbase-server-DataMigrationandMaterializedViews
https://wiki.earthdata.nasa.gov/display/OIIP/Manual+Installation+of+tagbase-server#ManualInstallationoftagbase-server-MaterializedViews
https://wiki.earthdata.nasa.gov/display/OIIP/Manual+Installation+of+tagbase-server#ManualInstallationoftagbase-server-IssuesandFeedback
https://git.earthdata.nasa.gov/projects/OIIP/repos/tagbase-server/browse

 16

 Requirements

1. Python 3.5.2+
2. Postgres (ensure that the both ```log_timezone = 'UTC'``` and ```timezone = 'UTC'``` are set in

```postgresql.conf``` 
 
 

 Tagbase Server 

To run the server, execute the following from the root directory: 
 
pip3 install -r requirements.txt 
python3 -m swagger_server 
 
and open your browser to http://localhost:5433/v1/tagbase/ui/ 
The Swagger API definition lives at http://localhost:5433/v1/tagbase/swagger.json 
 
To edit the Swagger definition file, navigate to http://editor2.swagger.io/#, you can then load the 
swagger definition and hack away! 
 

 PostgreSQL 

The Tagbase server requires access to a (Postgres) SQL DB. We can create this as follows 
brew install postgresql 
 
You can then start this in the foreground as follows .. 
 
postgres -D /usr/local/var/postgres 
 
Postgres data tables still need to be defined however. Simply execute … 
 
psql -f sqldb/tagbase-schema.sql 
 
The above creates the original database, tables, sequences and indexes. You will see a lot of output to 
the terminal indicating that the database table structures are being loaded and data is being populated. 
 
You can go ahead and now connect to the DB (using ```psql```) and query data e.g. 
 
lmcgibbn=# \connect tagbase 
 
You are now connected to database "tagbase" as user "...". 
 
Tagbase=# \dt 
 
List of relations 
Schema | Name | Type | Owner 
--------+-------------------------+-------+---------- 
public | data_histogram_bin_data | table | lmcgibbn 
public | data_histogram_bin_info | table | lmcgibbn 
public | data_position | table | lmcgibbn 
public | data_profile | table | lmcgibbn 
public | data_time_series | table | lmcgibbn 

http://localhost:5433/v1/tagbase/ui/
http://localhost:5433/v1/tagbase/swagger.json
http://editor2.swagger.io/#,


 17 

public | metadata | table | lmcgibbn 
public | metadata_types | table | lmcgibbn 
public | observation_types | table | lmcgibbn 
public | proc_observations | table | lmcgibbn 
public | submission | table | lmcgibbn 
(11 rows) 
tagbase=# SELECT * FROM metadata_types ; 
... 
attribute_id | category | attribute_name | type | description | example | comments | necessity 
--------------+---------------------+---------------------------------+--------+-------------------------------------------------------- 
1 | instrument | instrument_name | string |  
 
Append an identifer that is unique within your organization. This is essential if a device is recycled. | 
16P0100-Refurb2 
 
You are now ready to begin interacting with the Tagbase server via the REST endpoints. You can do this 
by navigating to your Browser at http://localhost:5433/v1/tagbase/ui/ and populating data into the 
etuff endpoint. 
  

http://localhost:5433/v1/tagbase/ui/


 18 

6. Generating Tagbase Materialized Views 
 
PostgreSQL Materialized Views extend the concept of database views; virtual tables which represent 
data of the underlying tables, to the next level that allows views to store data physically, and we call 
those views materialized views. A materialized view caches the result of a complex expensive query and 
then allows you to refresh this result periodically.  
 
Upon successful ingestion of files into Tagbase, you are likely to want to generate materialized views in 
order to access the 'application ready' tagbase data. 
 
N.B. Previously, it was necessary to execute a data migration command which essentially 
populated initial staging data around the DB. This is now managed by a trigger such that 
all we need to worry about it generating materialized views. 
 
You can generate the Tagbase materialized views by simply opening the following file (see also Appendix 
C) 
 
$ open tagbase-server/sql/tagbase-materialized-views.sql 
 
... and executing the contents as a query within the PostgreSQL PgAqmin Query Tool. 
 
Or you if you prefer to use the PostgreSQL command line, generate the Tagbase materialized views by 
executing the following … 
 
psql -f tagbase-materialized-views.sql 
 
 
Note that similar to the ingestion and migration routines, generation of the materialized views may take 
a while so be patient. Once it has completed however, you can browse the materialized views. 
 
N.B. It should be noted that materialized views can only be generated once... this process should not be 
executed every time a file is ingested! 
 
Development, Support and Community 
Please reach out to the OIIP project team at oiip@jpl.nasa.gov 
  

https://www.postgresql.org/docs/current/static/rules-materializedviews.html
https://git.earthdata.nasa.gov/projects/OIIP/repos/tagbase-server/browse/sqldb/tagbase-materialized-views.sql
mailto:oiip@jpl.nasa.gov


 19 

 

Appendix A – Example of an eTUFF file for time series data 

recorded by a sailfish  
 

Note most data are truncated for simplicity and clarify 

// global attributes: 

  :institution = "LPRC" 

  :references = "Scientific Reports volume 6, Article number: 38163 (2016) 

doi:10.1038/srep38163" 

// etag instrument attributes: 

  :person_owner = "Molly Lutcavage" 

  :owner_contact = "melutcavage@gmail.com" 

  :device_type = "PSAT" 

  :manufacturer = "Microwave Telemetry" 

  :model = "X-Tag" 

  :serial_number = "20555" 

  :ptt = "117259" 

// etag attachment attributes:  

  :attachment_method = "anchor" 

// etag deployment attributes:   

  :datetime_release = "2013-04-13" 

  :lon_release = "-86.60" 

  :lat_release = "21.38" 

// etag end of mission attributes: 

  :end_type = "recaptured" 

  :end_details = "recovered by fishing fleet" 

  :date_end = "2013-04-28" 

  :lon_end = "-84.93" 

  :lat_end = "25.26" 

// etag animal attributes: 

  :species_capture = "Istiophorus platypterus" 

  :length_capture = "171" 

  :length_unit_capture = "cm" 

  :length_type_capture = "lower jaw fork length" 

  :length_method_capture = "measured"  

// etag waypoints attributes: 

  :waypoints_source = "modeled" 

  :waypoints_method = "ukfsst" 

// etag quality attributes: 

  :found_problem: "no" 

  :person_qc: "Tim Lam" 

//file attributes: 

  :parsing_software: "Tagbase 4.9" 

  :schema_observationtypes: 

"https://raw.githubusercontent.com/tagbase/tagbase/master/ObservationTypes.xml" 

// data: 

// DateTime,VariableID,VariableValue,VariableName,VariableUnits 

2013-04-14 00:00:00,2,273.40,longitude,degree 

2013-04-14 00:00:00,3,21.38,latitude,degree 

2013-04-14 00:00:00,19,0.00,longitudeError,degree 

2013-04-14 00:00:00,20,0.00,latitudeError,degree 

2013-04-14 16:15:00,5,0.00,depth,meters 

2013-04-14 16:15:00,6,30.09,temperature,Celsius 

2013-04-14 16:15:00,8,4091.00,light,units 

2013-04-14 16:17:00,5,0.00,depth,meters 

2013-04-14 16:17:00,6,30.09,temperature,Celsius 

2013-04-14 16:17:00,8,4091.00,light,units 

2013-04-14 16:19:00,5,0.00,depth,meters 

2013-04-14 16:19:00,6,30.09,temperature,Celsius 

2013-04-14 16:19:00,8,4091.00,light,units 

2013-04-14 16:21:00,5,0.00,depth,meters 

2013-04-14 16:21:00,6,30.09,temperature,Celsius 

2013-04-14 16:21:00,8,4091.00,light,units 

2013-04-14 16:23:00,5,0.00,depth,meters 



 20 

Appendix B – Table structures of Tagbase in PostgreSQL  
 

CREATE TABLE submission 

( 

    submission_id   BIGSERIAL                     PRIMARY KEY, 

    tag_id          bigint                        NOT NULL, 

    dmas_granule_id bigint, 

    date_time       timestamp(6) with time zone   DEFAULT current_timestamp, 

    filename        character varying(255), 

    version         character varying(50) 

); 

 

CREATE TABLE observation_types 

( 

    variable_id     BIGSERIAL               PRIMARY KEY, 

    variable_name   character varying(255)  UNIQUE NOT NULL, 

    standard_name   character varying(255), 

    variable_source character varying(255), 

    variable_units  character varying(255), 

    notes           text 

); 

 

CREATE TABLE proc_observations 

( 

    date_time           timestamp(6) with time zone, 

    variable_id         bigint                        NOT NULL  REFERENCES 

observation_types (variable_id), 

    variable_value      double precision              NOT NULL, 

    submission_id       bigint                        NOT NULL, 

    tag_id              bigint                        NOT NULL, 

  REFERENCES submission (submission_id) ON DELETE CASCADE 

); 

 

CREATE TABLE metadata_types 

( 

   attribute_id     bigint                    PRIMARY KEY, 

   category         character varying(1024)   NOT NULL, 

   attribute_name   character varying(1024)   NOT NULL, 

   type             character varying(1024)   NOT NULL, 

   description      text                      NOT NULL, 

   example          text, 

   comments         text, 

   necessity        character varying(1024)  NOT NULL 

); 

 

CREATE TABLE metadata 

( 

    submission_id     bigint    NOT NULL  REFERENCES submission (submission_id) ON 

DELETE CASCADE, 

    attribute_id      bigint    NOT NULL  REFERENCES metadata_types (attribute_id), 

    attribute_value   text      NOT NULL 

); 

 

CREATE TABLE data_time_series 

( 

    date_time           timestamp(6) with time zone, 

    variable_id         bigint                        NOT NULL  REFERENCES 

observation_types (variable_id), 

    variable_value      double precision              NOT NULL, 

    submission_id       bigint                        NOT NULL  REFERENCES submission 

(submission_id) ON DELETE CASCADE, 

    tag_id              bigint                        NOT NULL, 

    position_date_time  timestamp(6) with time zone 

); 

 

CREATE TABLE data_position 

( 



 21 

    date_time           timestamp(6) with time zone, 

    lat                 double precision, 

    lon                 double precision, 

    lat_err             double precision, 

    lon_err             double precision, 

    submission_id       bigint                        NOT NULL  REFERENCES submission 

(submission_id) ON DELETE CASCADE, 

    tag_id              bigint                        NOT NULL 

); 

 

 

CREATE TABLE data_histogram_bin_info 

( 

    variable_id         bigint                        NOT NULL  REFERENCES 

observation_types (variable_id), 

    bin_id          bigint                        NOT NULL  , 

    bin_class       integer                       NOT NULL, 

    min_value       double precision, 

    max_value       double precision, 

    UNIQUE (bin_id, bin_class) 

); 

 

CREATE TABLE data_histogram_bin_data 

( 

    submission_id     bigint    NOT NULL  REFERENCES submission (submission_id) ON 

DELETE CASCADE, 

    tag_id            bigint    NOT NULL, 

    bin_id            bigint    NOT NULL  REFERENCES data_histogram_bin_unit (bin_id) 

ON DELETE CASCADE, 

    bin_class         integer    NOT NULL, 

    date_time         timestamp(6) with time zone, 

    variable_id         bigint                        NOT NULL  REFERENCES 

observation_types (variable_id), 

    variable_value      double precision              NOT NULL, 

    position_date_time  timestamp(6) with time zone 

); 

 

CREATE TABLE data_profile 

( 

    submission_id     bigint    NOT NULL  REFERENCES submission (submission_id) ON 

DELETE CASCADE, 

    tag_id            bigint    NOT NULL, 

    date_time         timestamp(6) with time zone, 

    depth             double precision, 

    variable_id         bigint                        NOT NULL  REFERENCES 

observation_types (variable_id), 

    variable_value      double precision              NOT NULL,    position_date_time  

timestamp(6) with time zone 

); 

 

 



 22 

Appendix C – SQL Script for Running Materialized Views  
Copy the SQL script below and execute it in PostgreSQL/Tagbase in the PgAmin console or save it to file 

as “tagbase-materialized-views.sql” and execute from the PostgreSQL command line. 

 

tagbase-materialized-views.sql 

-- Uncomment the line below if you run this from the terminal. 

--\connect tagbase 

 

-- MATERIALIZED VIEW 

 

CREATE MATERIALIZED VIEW mview_vis_data 

AS 

 SELECT 

    variable.submission_id AS source_id, 

    variable.variable_value AS measurement_value, 

    variable.variable_name AS measurement_name, 

    variable.variable_units AS measurement_units, 

    depth.depth, 

    variable.date_time AS measurement_date_time, 

    data_position.date_time AS position_date_time, 

    data_position.lat, 

    CASE WHEN data_position.lon > 180 THEN data_position.lon - 360 ELSE 

data_position.lon END, 

    data_position.lat_err, 

    data_position.lon_err 

   FROM ( SELECT x.variable_value, 

            y.variable_name, 

            x.date_time, 

            x.submission_id, 

            y.variable_units, 

            x.position_date_time 

           FROM data_time_series x, 

            observation_types y 

          WHERE x.variable_id = y.variable_id AND y.variable_name <> 'depth' 

AND y.variable_name <> 'datetime') variable, 

    data_position, 

    ( SELECT x.variable_value AS depth, 

            x.date_time, 

            x.submission_id 

           FROM data_time_series x, 

            observation_types y 

          WHERE x.variable_id = y.variable_id AND y.variable_name = 'depth') 

depth 

  WHERE variable.submission_id = data_position.submission_id AND 

variable.submission_id = depth.submission_id AND variable.position_date_time 

= data_position.date_time AND depth.date_time = variable.date_time 

WITH DATA; 

 

 

CREATE MATERIALIZED VIEW mview_vis_data_histogram 

AS 

 SELECT 

    data.submission_id AS source_id, 

    data.min_value AS bin_class, 

    data.variable_value AS measurement_value, 

    data.date_time AS measurement_date_time, 

    data_position.date_time AS position_date_time, 



 23 

    data_position.lat, 

    CASE WHEN data_position.lon > 180 THEN data_position.lon - 360 ELSE 

data_position.lon END, 

    data_position.lat_err, 

    data_position.lon_err 

   FROM ( SELECT data_histogram_bin_info.min_value, 

            data_histogram_bin_data.submission_id, 

            data_histogram_bin_data.date_time, 

            data_histogram_bin_data.variable_value, 

            data_histogram_bin_data.position_date_time 

           FROM data_histogram_bin_info, 

            data_histogram_bin_data 

          WHERE data_histogram_bin_info.bin_id = 

data_histogram_bin_data.bin_id AND data_histogram_bin_info.bin_class = 

data_histogram_bin_data.bin_class) data, 

    data_position 

  WHERE data.submission_id = data_position.submission_id AND 

data.position_date_time = data_position.date_time 

WITH DATA; 

 

 

 

CREATE MATERIALIZED VIEW mview_vis_data_profile 

AS 

 SELECT 

    data.submission_id AS source_id, 

    data.depth, 

    data.variable_value AS measurement_value, 

    data.date_time AS measurement_date_time, 

    data_position.date_time AS position_date_time, 

    data_position.lat, 

    CASE WHEN data_position.lon > 180 THEN data_position.lon - 360 ELSE 

data_position.lon END, 

    data_position.lat_err, 

    data_position.lon_err 

   FROM ( SELECT data_profile.submission_id, 

            data_profile.date_time, 

            data_profile.depth, 

            data_profile.variable_value, 

            data_profile.position_date_time 

           FROM data_profile) data, data_position 

  WHERE data.submission_id = data_position.submission_id AND 

data.position_date_time = data_position.date_time 

WITH DATA; 

 

 

CREATE MATERIALIZED VIEW mview_vis_metadata 

AS 

 SELECT metadata.submission_id AS source_id, 

    'Global Attributes'::text AS attribute_type, 

    NULL::character varying AS variable, 

    metadata_types.category, 

    metadata_types.attribute_name, 

    "left"("right"(metadata.attribute_value, length(metadata.attribute_value) 

- 1), '-1'::integer) AS attribute_value 

   FROM metadata_types, 

    metadata 

  WHERE metadata_types.attribute_id = metadata.attribute_id AND 

(metadata_types.category::text = 'instrument'::text AND 

(metadata_types.attribute_name::text = ANY 

(ARRAY['instrument_name'::character varying, 'instrument_type'::character 

varying, 'firmware'::character varying, 'manufacturer'::character varying, 



 24 

'model'::character varying, 'owner_contact'::character varying, 

'person_owner'::character varying, 'serial_number'::character 

varying]::text[])) OR metadata_types.category::text = 'programming'::text AND 

(metadata_types.attribute_name::text = ANY 

(ARRAY['programming_report'::character varying, 

'programming_software'::character varying]::text[])) OR 

metadata_types.category::text = 'attachment'::text AND 

metadata_types.attribute_name::text = 'attachment_method'::text OR 

metadata_types.category::text = 'deployment'::text AND 

(metadata_types.attribute_name::text = ANY 

(ARRAY['geospatial_lat_start'::character varying, 

'geospatial_lon_start'::character varying, 'person_tagger_capture'::character 

varying, 'time_coverage_start'::character varying]::text[])) OR 

metadata_types.category::text = 'animal'::text AND 

(metadata_types.attribute_name::text = ANY 

(ARRAY['condition_capture'::character varying, 'length_capture'::character 

varying, 'length_method_capture'::character varying, 

'length_type_capture'::character varying, 'length_unit_capture'::character 

varying, 'platform'::character varying, 'taxonomic_serial_number'::character 

varying]::text[])) OR metadata_types.category::text = 'end_of_mission'::text 

AND (metadata_types.attribute_name::text = ANY 

(ARRAY['time_coverage_end'::character varying, 'end_details'::character 

varying, 'end_type'::character varying, 'geospatial_lat_end'::character 

varying, 'geospatial_lon_end'::character varying]::text[])) OR 

metadata_types.category::text = 'waypoints'::text AND 

metadata_types.attribute_name::text = 'waypoints_source'::text OR 

metadata_types.category::text = 'quality'::text AND 

(metadata_types.attribute_name::text = ANY (ARRAY['found_problem'::character 

varying, 'person_qc'::character varying]::text[]))) 

UNION 

 SELECT data_time_series.submission_id AS source_id, 

    'Variable Attributes'::text AS attribute_type, 

    observation_types.standard_name AS variable, 

    NULL::character varying AS category, 

    'units'::character varying AS attribute_name, 

    observation_types.variable_units AS attribute_value 

   FROM observation_types, 

    ( SELECT data_time_series_1.variable_id, 

            data_time_series_1.submission_id 

           FROM data_time_series data_time_series_1 

          GROUP BY data_time_series_1.variable_id, 

data_time_series_1.submission_id) data_time_series 

  WHERE observation_types.standard_name IS NOT NULL AND 

observation_types.variable_id = data_time_series.variable_id 

UNION 

 SELECT data_time_series.submission_id AS source_id, 

    'Variable Attributes'::text AS attribute_type, 

    observation_types.standard_name AS variable, 

    NULL::character varying AS category, 

    'standard_name'::character varying AS attribute_name, 

    observation_types.standard_name AS attribute_value 

   FROM observation_types, 

    ( SELECT data_time_series_1.variable_id, 

            data_time_series_1.submission_id 

           FROM data_time_series data_time_series_1 

          GROUP BY data_time_series_1.variable_id, 

data_time_series_1.submission_id) data_time_series 

  WHERE observation_types.standard_name IS NOT NULL AND 

observation_types.variable_id = data_time_series.variable_id 

UNION 

 SELECT data_time_series.submission_id AS source_id, 

    'Variable Attributes'::text AS attribute_type, 



 25 

    observation_types.standard_name AS variable, 

    NULL::character varying AS category, 

    'long_name'::character varying AS attribute_name, 

    observation_types.variable_name AS attribute_value 

   FROM observation_types, 

    ( SELECT data_time_series_1.variable_id, 

            data_time_series_1.submission_id 

           FROM data_time_series data_time_series_1 

          GROUP BY data_time_series_1.variable_id, 

data_time_series_1.submission_id) data_time_series 

  WHERE observation_types.standard_name IS NOT NULL AND 

observation_types.variable_id = data_time_series.variable_id 

WITH DATA; 

 



 26 

References 

 

1.  ACCESS15-0017 Oceanographic In-situ Interoperability Project Deliverable 1.2. TAG METADATA 
REVIEW & RECOMMENDATIONS DOCUMENT. Version: 1.0, February 27, 2017, 30p. 
https://oiip.jpl.nasa.gov/doc/OIIP_Deliverable1.2_TagMetadata_20170227.pdf  

https://oiip.jpl.nasa.gov/doc/OIIP_Deliverable1.2_TagMetadata_20170227.pdf

